

HYDRAULIC ANALYSIS TECHNICAL ASSESSMENT

Workshop #2

April 16, 2015

Vegetation Maintenance

- Vegetation maintenance clearing is required on Soft Bottom Channels and levees
- 1. To provide flood protection for County residents
- 2. To comply with USACE Operation & Maintenance Manual
- 3. To comply with USACE Levee Safety Program
- 4. To comply with FEMA Levee Certification Program

Overview

- Purpose of the hydraulic study
- Design requirements for flood protection
- Hydraulic software and modeling
- Manning's roughness coefficient
- Examples of hydraulic analysis

Hydraulic Software

- U.S. Army Corps of Engineers HEC-RAS software
- Developed by the Hydrologic Engineering Center
- Peer-reviewed
- Widely used and accepted
- Available free of charge

HEC-RAS

- User interacts through a graphical user interface (GUI)
- Compute water surface profiles
- Energy losses evaluated by friction (Manning's equation)

HEC-RAS

HEC-RAS

$$Z_2 + Y_2 + \frac{\alpha_2 V_2^2}{2g} = Z_1 + Y_1 + \frac{\alpha_1 V_1^2}{2g} + h_e$$

$$h_e = L\bar{S}_f + C \left| \frac{\alpha_2 V_2^2}{2g} - \frac{\alpha_1 V_1^2}{2g} \right|$$

$$\bar{S}_f = \left[\frac{Q \times n}{1.486 \times AR^{2/3}}\right]^2$$

Developing A Hydraulic Model with HEC-RAS

Geometric data

- As-built plans, field surveys, LiDAR
- Defines channel shape
- In Bridges, culverts, etc.
- Manning's roughness coefficient (n-value)
- Flow data
 - At least one flow rate
 - Can be changed at any cross-section
- Boundary conditions
 - Establishes starting water surface conditions
 - Required at open ends of the river system

^{6497943.71, 1749078.42}

🗢 Cross Sectio	on Data -	Reach 25 ·	Rev2			and the second		
Exit Edit Options Plot Help								
River: LA Rive	er	•	Apply Data 🙀 🤝 🕂 🗰	Plot	<u>Options</u>	🖺 🎒 🗆 Keep Prev XS Plots	Clear Prev	
Reach: (Lower)		▼ F	iver Sta.: 15281 💽 👤 🕇		LACDA -	Stormwater Management Plan P	lan: Reach 25 - Rev2	2/17/2015
Description				1		RS = 15281		
Del Row		Ins Row	Downstream Beach Lengths	í I	40-	<.04 ×<.035 ×<025	i .	
Cross Sec	- ction Coord	linates	LOB Channel ROB		40	•	3 4 1	Legend
Station	Elevation	n Val 🔺	231 231 231				5	Ground
1 195	38.75	0.04	Manning's n Values		35	ŧ	Ţ	Bank Sta
2 209.99	38.75		LOB Channel ROB	1			1	
3 210	34		N/A N/A N/A		30	Ţ	Ţ	
4 217	30		Main Channel Bank Stations				}	
5 245 6 270	10	0.035	Left Bank Right Bank	Ē	25	}	{	
7 275	9	0.035	195 817.49	atio	-	ł	{	
8 360	8	0.025	Cont\Exp Coefficient (Steady Flow)	l l	20			
9 485	6		Contraction Expansion	- י	1	}		
10 635	6		0 0	1	15	l. l.	÷	
11 650	7)- ,-]		}	
12 700	9	0.035			10-	7	Į	
13 750	9	0.04				bB	, mer	
14 /65	10	0.04			_		ď	
	10				100	200 300 400 500 6	00 700 800	900
						Station (ft)		
,				_				

Manning's Roughness Coefficient

- Very significant in computing water surface profiles
- Estimated using formula developed by Cowan (1956)

$$n = (n_b + n_1 + n_2 + n_3 + n_4)m$$

Where:

 n_b = a base value of n for a straight, uniform, smooth channel in natural materials,

- n_1 = a correction factor for the effect of surface irregularities,
- n_2 = a value for variation in the shape and size of the channel cross section,
- n_3 = a value for obstructions,
- n_4 = a value for vegetation and flow conditions, and
- m = a correction factor for meandering of the channel
- Adjustments based on field site observations

Effects of Roughness Coefficient on Channel Capacity

14

Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains

		Base n value		
Bed material	bed material (in millimeters)	Sträight uniform channel ¹	Smooth	
	Sand channels		-	
Sand ³	0.2	0.012	-	
	.3	.017	_	
	.4	.020	_	
	.5	.022	-	
	.6	.023	-	
	.8	.025	-	
	1.0	.026		
Stable of	hannels and flo	od plains		
Concrete		0.012-0.018	0.011	
Rock cut	-		.025	
Firm soil	-	0.025-0.032	.020	
Coarse sand	1-2	0.026-0.035	-	
Fine gravel	_	-	.024	
Gravel	2 64	0.028 0.035		
Coarse gravel	-		.026	
Cobble	64-256	0.030-0.050	-	
Boulder	>256	0.040-0.070	-	

Source: Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains (USGS, 1984)

Channel conditions		n value adjustment ¹	Example				
	Smooth Minor	0.000 0.001-0.005	Compares to the smoothest channel attainable in a given bed material. Compares to carefully dredged channels in good condition but having slightly				
Degree of irregularity	Moderate	0.006-0.010	erodec or scoured side slopes. Compares to dredged channels having moderate to considerable bed roughness and moderately slouphed or eroded side slopes.				
(n ₁)	Severe	0.011-0.020	Badly sloughed or scalloped banks of natural streams; badly eroded or sloughed sides of canals or drainage channels; unshaped, jagged, and irregular surface of channels in rock.				
Variation in channel cross section	Gradual Alternating occasjonally	0.000 0.001-0.005	Size and shape of channel cross sections change gradually. Large and small cross sections alternate occasionally, or the main flow occasionally shifts from side to side owing to changes in cross-sectiona shape.				
(<i>n</i> ₂)	Alternating frequently	0.010-0.015	Large and small cross sections alternate frequently, or the main flow frequently shifts from side to side owing to changes in cross-sectional shape.				
	Negligible	0.000-0.004	A few scattered obstructions, which include debris deposits, stumps, exposed roots, logs, piers, or isolated boulders, that occupy less than 5 percent of the cross-sectional area.				
Effect of	Minor	0.005-0.015	Obstructions occupy less than 15 percent of the cross-sectional area, and the spacing between obstructions is such that the sphere of influence around one obstruction does not extend to the sphere of influence around another obstruction. Smaller adjustments are used for curved smooth-surfaced objects				
obstruction (n ₃)	Appreciable	0.020-0.030	than are used for sharp-edged angular objects. Obstructions occupy from 15 to 50 percent of the cross-sectional area, or the space between obstructions is small enough to cause the effects of severa obstructions to be additive, thereby blocking an equivalent part of a cross section.				
	Severe	0.040-0.050	Obstructions occupy more than 50 percent of the cross-sectional area, or the space between obstructions is small enough to cause turbulence across most of the cross section.				
	Small	0.002-0.010	Dense growths of flexible turf grass, such as Bermuda, or weeds growing where the average depth of flow is at least two times the height of the vegetation supple tree seedlings such as willow, cottonwood, arrowweed, or saltcedar growing where the average depth of flow is at least three times the height of the vegetation.				
Amount of	Medium	0.010-0.025	Turf grass growing where the average depth of flow is from one to two times the height of the vegetation; moderately dense stemmy grass, weeds, or tree seedlings growing where the average depth of flow is from two to three times the height of the vegetation; brushy, moderately dense vegetation, similar to 1- to 2-year-old willow trees in the dormant season, growing along the banks and no significant vegetation is evident along the channel bottoms where the bydraulic radius exceeds 2 ft.				
vegetation (n ₄)	Large	0.025-0.050	Turf grass growing where the average depth of flow is about equal to the heigh of the vegetation; 8- to 10-year-old willow or cottonwood trees intergrown with some weeds and brush (none of the vegetation in foliage) where the hydraulic radius exceeds 2 ft; bushy willows about 1 year old intergrown with some weeds along side slopes (all vegetation in full foliage), and no significant vegetation exists along channel bottoms where the hydraulic radius is greater than 2 ft.				
	Very large	0.050-0.100	Turf grass growing where the average depth of flow is less than half the heigh of the vegetation; bushy willow trees about 1 year old intergrown with weeds along side slopes (all vegetation in full foliage), or dense cattails growing along channel bottom; trees intergrown with weeds and brush (all vegetation in full foliage).				
Degree of	Minor	1.00	Ratio of the channel length to valley length is 1.0 to 1.2.				
meandering ²	Appreciable	1.15	Ratio of the channel length to valley length is 1.2 to 1.5.				

PUBLIC WORKS

17

Summary of Modeling Procedures

- Develop HEC-RAS model
- Estimate Manning's roughness coefficients
- Calculate water surface elevations
- Compare results to design conditions
- Determine if channel has capacity
- Show examples

Modeled Scenarios

- Existing Vegetation Scenario
 - Developed for every reach
 - Based on existing vegetation levels prior to maintenance activities
 - If no excess capacity, looked at a clear channel scenario
 - If excess capacity, further modeling done using recommendation scenario
- Olear Channel Scenario
 - Developed for reaches found to have insufficient capacity under existing vegetation levels
 - Assumed no vegetation located within the channel (design condition)
 - If still insufficient capacity, no further modeling performed
 - If excess capacity available, further modeling done assuming vegetation condition less than existing
- Recommendation Scenario
 - Developed if reach had sufficient channel capacity under existing vegetation or clear channel scenario
 - Vegetation levels based on recommendations by biologist
 - Manning's n-values adjusted accordingly to account for additional vegetation
 - Hydraulics checked to ensure sufficient capacity maintained along the reach

Reach 25 – Lower LA River

- Willow Street to Pacific Coast Highway
- Constructed by U.S. Army Corps of Engineers in 1955
- Improved by Corps in 1998 as part of the LACDA Project
- Designed for 133-year flood protection (182,000 cfs)
- IEC-RAS model developed by Corps in 2004

LOS ANGELES COUNTY DRAINAGE AREA RIO HONDO CHANNEL AND LOS ANGELES RIVER WHITTIER NARROWS DAM TO PACIFIC OCEAN

STORMWATER MANAGEMENT PLAN

PHASE I

HEC-RAS HYDRAULIC MODELS

RIO HONDO CHANNEL REACH 4 AND LOWER LOS ANGELES RIVER REACHES 3B, 3A, AND 2

> Department of the Army Los Angeles District, Corps of Engineers Los Angeles, California

> > July 2004

LOS ANGELES COUNTY DRAINAGE AREA RIO HONDO CHANNEL AND LOS ANGELES RIVER WHITTIER NARROWS DAM TO PACIFIC OCEAN

STORMWATER MANAGEMENT PLAN

PHASE 1

HEC-RAS HYDRAULIC MODELS

RIO HONDO CHANNEL REACH 4 AND LOWER LOS ANGELES RIVER REACHES 3B, 3A, and 2

1. INTRODUCTION

Purpose

1.1 The purpose of this report is to present the hydraulic analyses for Phase I of the Stormwater Management Plan. In addition, the report establishes the regulatory water surface elevations that will be used as the basis against which all hydraulic impacts to the Phase I channels are evaluated.

Scope

1.2 Phase I of the plan encompasses the development of hydraulic models for the Rio Hondo Channel and lower Los Angeles River. Additional phases for modeling the remaining portion of the Los Angeles River and other major tributaries may follow at a later date.

Project Authorization

1.3 The Project Cooperation Agreement (Appendix A) between the Department of the Army and the Los Angeles County Flood Control District for Construction of the Los Angeles County Drainage Area, California Flood Control Project, states under Article II.Q that:

"The Non-Federal Sponsor shall prescribe and enforce regulations, or undertake other actions, managing stormwater runoff (hereinafter the "stormwater management plan") from within Los Angeles County to ensure that the quantity or concentration of stormwater inflow does not reduce the authorized level of flood protection."

1.4 In December 2002, the U.S. Army Corps of Engineers (USACE) and Los Angeles County Department of Public Works (LACDPW) agreed to develop a detailed HEC-RAS hydraulic model of the Los Angeles County Drainage Area (LACDA) system to assess the

PUBLIC WORKS

 $\frac{Cattails, small shrubs}{n_b = 0.025 (firm soil)}$ $n_4 (vegetation) = 0.010 (med)$ n = 0.035

<u>**Open Water**</u> $n_b = 0.025$ (firm soil) No adjustment factors n = 0.025

<u>Weeds, grasses, small shrubs,</u> <u>cattails on fringe</u> $n_b = 0.025$ (firm soil) n_4 (vegetation) = 0.006 (small) n = 0.031

 $\frac{Channel Bank}{n_b = 0.040 \text{ (rip-rap)}}$ No adjustment factors n = 0.040

- Alameda Street to LA River confluence
- Constructed by U.S. Army Corps of Engineers in 1955
- Improved by Corps in 1998 as part of the LACDA Project (710 Fwy to LA River confluence)
- Increased capacity to 17,300 cfs by addition of parapet walls
- Upstream capacity is 13,750 cfs
- 100-Year Flood is 16,500 cfs
- IEC-RAS model developed by Corps in 2011

Los Angeles County Drainage Area San Gabriel River, San Jose Creek Compton Creek, Upper Rio Hondo Coyote Creek, Verdugo Wash Arroyo Seco HEC-RAS Hydraulic Models

FINAL REPORT

Prepared By:

February 2011

Reach 24 – Compton Creek

Reach 15 – Pacoima Wash

- Parthenia Street to Marson Street
- Built by LACFCD in 1956
- HEC-RAS model developed from as-built plans
- Design Flow is 4,460 cfs

33

Reach 15 – Pacoima Wash

USACE

г

PLATE 11

Table 17: Revised Channel Capacity and Bankfull Discharge

÷							
	Reach ^(a)	River Stations	Design ^(b) Discharge	Bankfull ^(c) Discharge	Freeboard ^(d)	Revised ^(e) Channel Capacity	Return Period ^(f)
			ft³/s ັ	ft³/s ັ	ft	ft ³ /s	(yrs)
	Reach 1	625+77 to 547+45	40,000	NA	3	29,300	10
	Reach 2	546+45 to 510+05	40,000	35,100	3	25,800	5
	Reach 3a	504+93 to 477+85	40,000	NA	3	40,000	10
	Reach 3b	475+68 to 452+58	78,000	NA	3	78,000	30
	Reach 4	432+16 to 359+75	78,000	45,200	3	34,700	5
	Reach 5	358+63 to 271+89	78,000	48,200	3	34,000	5
	Reach 6a	270+28 to 262+73	78,000	78,000	2.5	64,500	15
	Reach 6b	257+85 to 144+23	83,700	66,800	2.5	50,500	10
	Reach 7a	142+91 to 131+22	83,700	NA	2.5	83,700	30
	Reach 7b	128+71 to 86+61	104,000	98,900	3	83,700	30
	Reach 8	86+07 to 10+31	104,000	89,700	3	89,600	30

Notes:

(a) letters a & b in Reach names denote a break due to a confluence or flow change.

(b) Original design discharge for clean prismatic channel.

(c) Bankfull discharge with vegetation and sedimentation. The values shown are the minimum discharge within the reach. Bankfull discharges were only calculated for soft-bottom sections; NA denotes not applicable in all-concrete sections.

(d) Freeboard from EM 1110-2-1601; 3 feet for leveed sections and 2.5 feet for trapezoidal entrenched sections.

(e) Channel capacity with vegetation and sedimentation and freeboard. The values shown are the minimum within the reach.

(f) Return period for Revised Channel Capacity based on discharge frequency results from 1992 LACDA Feasibility Study.

U.S. ARMY ENGINEER DISTRICT

CORPS OF ENGINEERS

PLATE 23b

U.S. ARMY ENGINEER DISTRICT

CORPS OF ENGINEERS

